Spectral Clustering Based Null Space Linear Discriminant Analysis (SNLDA)
نویسندگان
چکیده
While null space based linear discriminant analysis (NLDA) obtains a good discriminant performance, the ability easily suffers from an implicit assumption of Gaussian model with same covariance each class. Meanwhile, mixture model discriminant analysis, which is a good way for processing issues on multiple subclasses in each class, depends on human experience on the number of subclasses and has a highly complex iterative process. Considering the cons and pros of the two mentioned approaches, we therefore propose a new algorithm, called Spectral clustering based Null space Linear Discriminant Analysis (SNLDA). The main contributions of the algorithm include the following three aspects: 1) Employing a new spectral clustering method which can automatically detect the number of clusters in each class. 2) Finding a unified null space for processing multi-subclasses issues with eigen-solution technique. 3) Refining the calculation of the covariance matrix in a single sample subclass. The experimental results show the promising of the proposed SNLDA algorithm.
منابع مشابه
Clustering-based two-dimensional linear discriminant analysis for speech recognition
In this paper, a new, Clustering-based Two-Dimensional Linear Discriminant Analysis (Clustering-based 2DLDA) method is proposed for extracting discriminant features in Automatic Speech Recognition (ASR). Based on Two-Dimensional Linear Discriminant Analysis (2DLDA), which works with data represented in matrix space and is adopted to extract discriminant information in a joint spectral-temporal ...
متن کاملOn Using a Pre-clustering Technique to Optimize LDA-Based Classifiers for Appearance-Based Face Recognition
Fisher’s Linear Discriminant Analysis (LDA) is a traditional dimensionality reduction method that has been proven to be successful for decades. To enhance the LDA’s power for high-dimensional pattern classification, such as face recognition, numerous LDA-extension approaches have been proposed in the literature. This paper proposes a new method that improves the performance of LDA-based classif...
متن کاملTo Weight or Not to Weight: Source-Normalised LDA for Speaker Recognition Using i-vectors
Source-normalised Linear Discriminant Analysis (SNLDA) was recently introduced to improve speaker recognition using i-vectors extracted from multiple speech sources. SNLDA normalises for the effect of speech source in the calculation of the between-speaker covariance matrix. Sourcenormalised-and-weighted (SNAW) LDA computes a weighted average of source-normalised covariance matrices to better e...
متن کاملSemi-supervised dimensionality reduction using orthogonal projection divergence-based clustering for hyperspectral imagery
Band clustering and selection are applied to dimensionality reduction of hyperspectral imagery. The proposed method is based on a hierarchical clustering structure, which aims to group bands using an information or similarity measure. Specifically, the distance based on orthogonal projection divergence is used as a criterion for clustering. After clustering, a band selection step is applied to ...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کامل